• 患者服务: 与癌共舞小助手
  • 微信号: yagw_help22

QQ登录

只需一步,快速开始

开启左侧

肿瘤分子检测的十八般武器都有啥

  [复制链接]
65086 9 keenman 发表于 2016-11-2 10:48:38 |

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

x
本帖最后由 keenman 于 2016-11-2 10:54 编辑 9 w) u4 |) R. A  x( [, l# j

, B! }' L7 ^' S0 `/ H作者:翱宇0 i. P( m5 F" ~3 ^
来源:癌度% f3 Q/ F) U* h: t

8 U( T* w; `/ k* X0 u
分子检测:肿瘤抗击战的前哨侦察兵
& f: g7 {( \. Q2 t' j, [0 I
8 `7 d# a0 v7 B; N3 V$ l% I
兵欲善其事,必先利其器。对肿瘤这场漫长的战争中,如果把药物比作是武器弹药,那么引导这些炮弹准确攻击而少误伤正常细胞、监控预后复发等等检测技术就可比作是前哨侦察兵了,或者可以形象地比作是“眼睛”,可见分子检测手段的重要性。不夸张地说,抗癌这场战争将不断受益于分子检测技术的进步。这篇帖子,我们来对肿瘤分子检测技术做个梳理,对它们的优缺点也做个评述。首先需要明确的是,没有完美的检测技术,只有针对特定情况和特定目的最合适的检测技术。
; ]3 o! X& M% E; L3 F8 D% O  v. q& W: |' P' w; T. i( v
概述
2 ?( A: F$ o$ U( `. ~1 _. F我们首先从遗传信息的传递法则来看目前的诊断技术,生命科学的中心法则是,DNA用来承载遗传信息,DNA转录成为RNA,RNA再翻译成为蛋白质,我们常见的检测技术,基本上就是检测这三种生物大分子的序列信息、表达水平等。由于RNA非常不稳定,很容易降解,因此目前对RNA进行检测多数在科研阶段,但检测RNA的好处是发现新的融合基因。总之目前主流的检测技术,基因测序是对DNA信息进行测定,免疫组化等是对蛋白质水平进行测定。
5 [" k' t* ^& P: j1 H( u7 p DNARNA.jpg : O% c" e% \" f4 ^3 n: {
在上图我们可以看到,虽然DNA转录为RNA,再翻译成蛋白质,但是如果没有DNA水平的扩增,也可能存在蛋白质高表达的情况,具体可能的原因很多,这里只是让大家记住一个结论,如果一个药物是靶向肿瘤细胞的蛋白的,如西妥昔单抗,则最好使用组织样本检测EGFR蛋白水平,而不只是通过DNA水平的EGFR扩增判断是否对药物敏感,DNA水平不扩增,蛋白也可能高表达。
3 f8 k5 t. P0 i2 Y4 X
4 U7 G' Y6 y6 W" E! [( _, K免疫组化5 g8 W( D( \, a1 u* ]
免疫组化,是应用免疫学的原理,使用特异性的抗体检测目标组织样本中某一类型蛋白水平的技术,需要注意的是免疫组化检测的只能是组织样本,如果目标蛋白表达量高可以表现出较为深的颗粒性着色。免疫组化技术已经非常成熟,很多蛋白都有特异的商业化抗体。一般对一个肿瘤进行定性,要检测一系列蛋白的表达情况,根据这些来对肿瘤进行定性。! I. o  ?5 h. R, X5 J7 k
组织样本中蛋白表达水平免疫组化检测.jpg ; ?# d# T6 B7 N4 T) W+ z- `2 K
免疫组化检测组织样本中蛋白表达水平( j% M4 e3 c1 [4 z' g- G2 `
免疫组化的结果解读有几种解读标准,一般而言如果是3个加号(+)认为是强阳性,如果是一个加号(+)和一个减号(-)也认为是阴性,介于二者之间的两个加号(+)认为是弱阳,如果是弱阳性的情况,有时需要再次使用FISH进行验证。% N& Q! `$ k( [
免疫组化主要检查组织样本的某些蛋白表达水平,主要用于肿瘤的分型。另外也根据一些蛋白表达量,来判断某些靶向药物的疗效。比如检查Her2的表达来指导曲妥珠单抗,检查EGFR表达来指导西妥昔单抗和帕尼单抗的使用、检查MET高表达来看卡博替尼的使用等。一般通过检测某些蛋白表达量高低指导的靶向药物比较少,而且某些蛋白表达水平与靶点药物疗效没有确凿性的关系。如血管内皮生长因子(VEGF)的表达量高低,并不能完全与贝伐单抗的疗效一致。血管内皮生长因子受体(VEGFR)的表达量并不能完全判断靶向药物的疗效。很多时候表达量较低,也是可以使用靶向药物的,如阿西替尼、阿帕替尼等。        - ]0 J- h7 A: T9 j% e/ F9 O7 V3 G
原位免疫荧光杂交技术.png : T& T( N+ b1 ?1 C
原位免疫荧光杂交FSIH
% {  F' |- c; ~$ H8 |& z! {原位免疫荧光杂交用来判断基因的融合,基因的断裂和重排,另外如存在染色体拷贝数增多也是可以使用FISH的,而且目前而言FISH是一个金标准。
* X" D  w, K+ ~$ F
8 H4 K" s8 o" \' [( q原位免疫荧光杂交技术
, J3 S3 l& s3 g" o1 tFISH的原理是,使用红绿两种荧光探针,分别标记某个基因的两端,如果一个基因的中间没有发生断裂,则红色荧光和绿色荧光靠近,表现的是一种黄色荧光信号,或者红绿两种荧光靠的很近。如果基因发生了断裂,如ALK与EML4基因融合,ALK基因中间断裂,则分别与ALK基因两端结合的红色荧光探针和绿色荧光探针分开,通过计数出现荧光分离的细胞数目,即可判断是否发生了基因断裂。FISH的检测方法比较成熟,但是操作比较复杂,涉及较多的人工,而且检测一个基因或染色体的重排都在3000元左右。不管是ALK基因的融合,还是脑胶质瘤的1p19q染色体重排,操作流程和价格都是类似的。
. Y, F! T; Z7 E) _- Y& n# v  c; x% u
一代基因测序技术, m( n/ d% ^# q) O, r% [4 Q
一代测序技术出现于上一世纪,是英国科学家sanger发明的,目前仪器和技术比较成熟,特点是一次性可以检测800-1000个碱基的长度,准确度较好,完成一个测序反应的价格在20元左右。但是缺点是通量低,如果是一次性检测几百个基因,几万个基因,这就该使用二代基因检测技术了,尤其是肿瘤具有异质性的特点,需要一次性对肿瘤组织里提取的DNA进行几千次、上万次的测序,对基因突变频率给出相应的数值,这就不是一代检测技术可以完成的了,只能使用二代基因检测技术。但是很多医院里的基因测序仪器都是一代的,主要是仪器价格低,比较成熟和稳定,但是需要知道的是,一代基因检测技术不能检测基因突变频率,而且由于肿瘤存在异质性,所以容易漏检低频的基因突变。
0 ~! O! e, w9 u! r  b7 e1 } 一代基因测序技术.jpg 9 X& s5 e! |( i7 t& ^6 m/ M/ f
一代基因测序技术(Sanger测序法)
; P) L- \* a6 a) P; Q
1 T, S- O- _+ |/ s0 i; Z& @二代基因检测技术
8 z7 l5 l8 @; B二代基因检测技术也称之为高通量测序技术,主要原理是通过超声波将DNA打成100-200bp的片段,然后通过一定的处理将每一个片段扩增成一个分子簇,再使用相应的技术检测每个分子簇合成一个碱基时释放的荧光信号,或者是电化学信号。可以实现较高的通量,目前较为新的检测技术,可以将人的基因组信息全部测完,价格已经降低为1万元以下。但是需要注意的是,人的全基因组测序是检测人的正常细胞的DNA序列信息,测序深度一般是30-50乘,而且只做基础的简单的分析,不会进行较为复杂的生物信息学分析。由于肿瘤具有异质性的特点,对肿瘤组织检测深度只有几十乘是不够的,有时要测几万乘,而且后面涉及到专业的分析和解读。所以这里有个误区,即为什么测一个人的基因组不到1万,检测几十个基因,几百个基因也得几千元,区别是测序深度和后续的生物信息学分析、报告解读。" M9 D0 c, t1 z+ E$ i
二代基因测序技术原理.png % _* O' Q" ^2 Y8 e0 Q" [
二代基因检测技术的原理! d' W' j8 R8 R
未来一定是二代基因检测技术的天下,当然目前有一个短板是,对血液里肿瘤细胞裂解释放的DNA检测的灵敏度不是很高,原因是血液里肿瘤细胞裂解释放的DNA浓度很低,只占1%左右,大部分是正常细胞裂解释放的DNA,而且二代基因检测技术还有测序深度越高,出现测序错误的问题,这个并不能通过单独加大测序深度来解决。吉因加公司的专利技术可对测序错误进行过滤,数据显示是极大地提高了血液检测肿瘤细胞DNA的灵敏度。
% M2 U8 G6 ?) p2 ^" Q9 }" c  g7 W1 ~8 k$ D% e1 h; Q+ r2 {
PCR的祖祖辈辈
" y* D6 ?2 W5 h' V$ |PCR技术也比较常见地用在肿瘤分子诊断领域。经常容易看到的一些EGFR的突变信息是使用QPCR(荧光定量PCR)检测的。我在研究生期间经常摆弄这种仪器,QPCR的结果是一些扩增曲线,通过设置阴性对照,阳性对照来判断是否存在特定的突变位点。QPCR被称为是第二代PCR技术,第一代PCR是比较传统的PCR扩增技术,这个是获得了诺贝尔奖的一项发明。$ h  ~- `$ o- I
ARMS-PCR的全称是突变扩增系统,厦门艾德公司具有一些专利,而且还有一些试剂盒获批对相应的突变基因位点进行检测,ARMS-PCR,比传统的PCR技术灵敏度和特异性会高很多,但其也是只能检测有限基因的已知位点。1 R4 z& N9 L& F7 M: C
ddPCR(微滴式数字PCR)是第三代PCR技术,原理是先将模板分子稀释,然后将每一个模板包裹到一个液滴里面(油包水),而且是每个液体只包裹了一个模板DNA分子,通过反应,液滴的DNA分子被放大了百万倍以上。通过对这些液滴进行检测可知道哪些液滴里有DNA模板分子,哪些里是没有的,进而实现绝对的定量。可以做到极为高的灵敏度和准确度,也就是几万个分子里有一个突变的分子DNA,也可以检测出来。这种方法比较适合对血液样本的已知基因突变位点进行检测,如EGFR基因的T790M,ALK基因克唑替尼耐药后出现的守门基因突变等,数字PCR的原理还是PCR,检测的是基因的已知突变位点,但是它极高的灵敏度是特点,比较适合血液样本检测EGFR、ALK的那些二次突变位点,进而知道后续的用药,这里我们也呼吁基因检测公司考虑开发相应的检测产品。/ H0 g# F# B) v" x- Z
数字PCR的检测原理示意图.jpg ; t/ b; ^  j9 c4 b
数字PCR的检测原理示意图7 E+ z2 v1 Y) k& g2 k& P1 w
* ?# h$ }: U2 j- G8 p
总结
2 y8 |5 _; H9 j7 {! ~! h7 T" E如本帖开始所说,没有任何一种检测技术是完美的,也就是既能保证检测的全面,灵敏度又很高,或者未来会有,现在还没有。下图是几种分子检测技术的灵敏度。Sanger(一代测序)的灵敏度是10%,二代基因检测技术的灵敏度是2%,普通数字PCR的灵敏度是1%,ArmsPCR的灵敏度在0.1%,数字PCR的灵敏度可以达到0.01%或者更低。
/ h* y: \3 [4 b- M" } 不同分子检测技术的灵敏度.jpg , j8 s2 i, N3 Y! U4 a  K) ~( p
不同分子检测技术的灵敏度' W) ?1 S- J5 S2 n* H% _" W3 N

& l  @1 |+ q5 G3 `一般而言,如果有组织样本,自然优先使用二代测序,因为癌细胞就在哪里,肯定可以测到突变信息,而且二代测序技术同时测几十个基因,几百个基因价格已经降低为五六千元,基本上是比较平民化的价格了,由于肿瘤的异质性,以及低频基因突变的存在,最重要的是组织样本很珍贵,用了以后再取就得又让患者受苦,所以最好还是测的全面一些,即使用二代基因检测技术。; ?' {5 x; S  k3 ~$ J9 t& _
对于血液样本,即晚期肿瘤患者,或者不适宜取组织样本的患者。抽血检测肿瘤细胞裂解释放的DNA,这个时候就存在一定的取舍,因为ctDNA的浓度较低,二代检测技术不一定都能测到。但是ARMS-PCR等技术只能检测有限基因的已知位点,而且对于一些基因突变的位置信息还检测不到(如C797S和T790M是顺式的还是反式的?)所以这个需要综合来考虑,即根据患者的治疗过程,选择合适的检测技术,如果就是只想检测EGFR的T790M,或者ALK的守门基因耐药突变,那就是用ARMS-PCR,或者后面的数字PCR,如果根本不知道是什么导致的耐药,甚至什么基因都不清楚,那就使用二代基因测序。. i. P6 o" Q$ A1 {0 a- c- w
2016年召开的肺癌会议上,吴一龙教授宣读了液体活检的专家共识,专家共识的要点如下所示:
* I! @$ ?+ _- ^9 U/ D! t- d1.        检测已知的、单个临床可药物抑制的靶点,液体活检技术推荐ARMS方法;检测已知的、多个平行临床可药物抑制的靶点,液体活检技术推荐NGS(高通量测序)方法。2 X0 a! ?4 }2 ^* m2 _$ |
2.        用于发现未知基因,探索疗效监测、预后判断和发现耐药机制等,液体活检技术建议使用NGS。+ u* a+ Y- v  x3 p
3.        液体活检包括循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA)可能用于肺癌早期诊断和复发监测,但目前仅限于科研探索。
& @/ d' Q8 F1 s  d6 }4.        NGS用于临床研究,需平衡患者利益、伦理要求和科学发现之间的关系,以患者利益为至上。
+ r4 [0 @4 |5 D
$ u  i1 I5 ~* V- w结语. G7 m" J! v0 t) ~; x! J% h% _& z
通过上面的文章我们可以了解到,目前来看,二代测序技术已经是主流的肿瘤分子检测技术,但是它在检测血液样本时需要在灵敏度上做些提升。这也并不只是加大测序深度,或者需要在其他方面做些创新,如吉因加公司的这种对测序错误进行的纠错等。目前来看,如果是检测特定基因的明确的位点,对灵敏度要求较高,则还是建议使用ARMS-PCR,以及数字PCR。
; C3 v7 O& c8 k/ N. z6 B2 A9 ]- E天下的武器哪一种最好,剑是兵中之王,但是也有缺点,那就是短啊。如果本领不高,遇到个拿长柄大砍刀的也就是悲剧了。或者我们也可以用剑来形容二代检测技术,它是肿瘤分子检测技术里一个威力极大的武器,但是其并不是完美无缺,当然在使用上也需结合患者的治疗状况,检测的目的,与其他检测技术配合。  V- ]* H' i" m3 G7 j3 k

" t, H" G8 K# C6 ?  l: r  I" r7 {4 h% e$ M" c" ~
参考文献0 t; z% @3 Y* x3 Q3 }
1、Diaz and Bardelli. J Clin Oncol, 2014,Feb 20;32(6):579-86.
* M( s3 [+ ~: A& w2、Liang Cheng, et al., Modern Pathology (2012) 25, 347–369.! t' F& h: w0 A& o2 [/ W. M

6 M3 q& @3 Z0 X' Y
5 U8 X+ [. i$ I: ?# F! V) j
本人不是医生,发帖内容是根据自身所掌握知识和以往的经验所建议,不构成治疗建议,请以医嘱为准

9条精彩回复,最后回复于 2020-12-8 10:00

累计签到:18 天
连续签到:1 天
[LV.4]与爱新星
与妻共舞  禁止发言 发表于 2016-11-11 10:28:55 来自手机 | 显示全部楼层 来自: 广东广州
提示: 作者被禁止或删除 内容自动屏蔽

举报 使用道具

回复
pennyer  高中三年级 发表于 2016-11-27 15:39:46 | 显示全部楼层 来自: 广东佛山
分析的很详细!受教。
在你身旁  初中一年级 发表于 2017-3-21 21:05:34 | 显示全部楼层 来自: 湖北武汉
学习了,群主点赞! l( q. U# b$ d' v0 s
枇杷果  初中二年级 发表于 2017-3-31 18:22:40 | 显示全部楼层 来自: 山东烟台
看不大懂,楼主能说说我家没有手术没有放化疗,要怎么做基因检测吗?哪种方法最好?
把人留住  初中二年级 发表于 2017-4-6 19:30:14 | 显示全部楼层 来自: 浙江温州
基因检测还是停留在肿瘤标本上,血液胸水等检测都不准确。科学家还需努力啊。
[img]http://imgstore01.cdn.sogou.com/app/a/1005200
累计签到:49 天
连续签到:2 天
[LV.5]普通爱粉
1艾米  禁止访问 发表于 2017-9-20 17:01:23 | 显示全部楼层 来自: 江西
提示: 作者被禁止或删除 内容自动屏蔽

举报 使用道具

回复
永远爱叶子姥姥  小学三年级 发表于 2017-9-22 09:53:27 | 显示全部楼层 来自: 陕西西安
给鹰斑竹点赞
累计签到:20 天
连续签到:1 天
[LV.4]与爱新星
360537391  高中一年级 发表于 2017-10-11 05:07:45 | 显示全部楼层 来自: 江苏
学习一下

举报 使用道具

回复
累计签到:16 天
连续签到:1 天
[LV.4]与爱新星
dianka  高中一年级 发表于 2017-11-1 01:39:04 | 显示全部楼层 来自: 北美地区
学习中

举报 使用道具

回复

发表回复

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

  • 回复
  • 转播
  • 评分
  • 分享
帮助中心
网友中心
购买须知
支付方式
服务支持
资源下载
售后服务
定制流程
关于我们
关于我们
友情链接
联系我们
关注我们
官方微博
官方空间
微信公号
快速回复 返回顶部 返回列表