自学自救 发表于 2025-4-14 19:54:28

Pak1抑制剂、BIRC2, BIRC3抑制剂的替代药物

一、pak1抑制剂替代药物
1、氟苯达唑、尼拉帕尼、阿卡替尼
《WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches》
p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis.
2、罗米地辛
《Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance》
PAK1, a Rac/CDC42-dependent Ser/Thr kinase, is required for both neurofibromatosis (NF) and RAS transformation in vivo. FK228, a histone deacetylase (HDAC) inhibitor, activates a very specific set of genes such as the tumor suppressor WAF1, an inhibitor of cyclin-dependent kinases (CDKs), and suppresses the growth of these tumors. In addition, this drug downregulates cyclin D1, which is upregulated by RAS through PAK1, in breast cancers. In this study, we demonstrate that FK228 at 0.1-1 nM significantly reduces the kinase activity of PAK1 in these cells, without affecting the protein level of PAK1. Interestingly, estrogen receptor (ER) and PAK1 mutually activate each other in breast cancers. Here we provide an evidence suggesting that breast cancers require PAK1 for their estrogen-dependent growth. Moreover, the treatment with FK228 strongly inhibits the estrogen-dependent growth of human breast cancers (both tamoxifen-sensitive and resistant cell lines) in vivo, suggesting that FK228 and other anti-PAK1 drugs would be useful for the treatment of breast cancers which become resistant to currently used estrogen antagonists such as tamoxifen.
3、伊维菌素
《Ivermectin suppresses tumour growth and metastasis through degradation of PAK1 in oesophageal squamous cell carcinoma》
Mechanistically, ivermectin strongly inhibited the expression of PAK1; by further gain- and loss-of-function experiments, we confirmed that PAK1 played a crucial role in ivermectin-mediated inhibitory effects on ESCC cells.
4、奥美昔芬
《Centchroman prevents metastatic colonization of breast cancer cells and disrupts angiogenesis via inhibition of RAC1/PAK1/β-catenin signaling axis》
The suppression of migration and invasion capacities of metastatic breast cancer cells upon CC treatment was associated with the inhibition of small GTPases (Rac1 and Cdc42) concomitant with the downregulation of PAK1 and downstream β-catenin signaling. In addition, CC upregulated the expression of miR-145, which is known to target PAK1.
5、紫草素
《Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells》
This study aimed to investigate the interaction and regulatory mechanisms of shikonin on its potential target p21-activated kinase 1 (PAK1). Through a labchip-based screening method, shikonin was identified as a potential bioactive PAK1 inhibitor. Molecular docking technology was used to detect the interaction sites of shikonin and PAK1 kinase. Western blot was performed to validate the mechanism. MTT and flow cytometry were practiced to investigate the effect of shikonin against pancreatic cancer cells. The results show that shikonin significantly inhibited the activity of PAK1 kinase with IC50 value of 7.252 ± 0.054 μM. Molecular docking studies showed that shikonin binds to the ATP-binding pocket of the PAK1 kinase domain. Moreover, shikonin inhibited PAK1 activation and its downstream signaling pathway proteins, while reducing proliferation and inducing apoptosis of pancreatic cancer cells. Further studies showed that the treatment of shikonin sensitized pancreatic cancer cells to chemotherapeutic drugs. These results suggest that shikonin, a potential natural inhibitor targeting PAK1 kinase, has promising potent applications in the treatment of pancreatic cancer and chemotherapy sensitization.
6、氯己定
《Old drug new tricks: Chlorhexidine acts as a potential allosteric inhibitor toward PAK1》
This paper describes the identification of chlorhexidine, an agent commonly used in clinical as a novel potential allosteric inhibitor of PAK1. In cellular assays, chlorhexidine showed a good inhibitory profile, and its inhibitory profile was even better than IPA-3, a well-known allosteric inhibitor. In pharmacology experiments, chlorhexidine successfully inhibited the relief of PAK1 dimer and inhibited the activation of PAK1. Our findings offer an insight for the new drug development of PAK1 inhibitor. We also provide a possible explanation for the phenomenon that the application of the chlorhexidine in peritoneal lavage inhibited the development of tumor.

二、BIRC2、BIRC3 抑制剂替代药物
1、AZD5582
《BIRC2-BIRC3 amplification: a potentially druggable feature of a subset of head and neck cancers in patients with Fanconi anemia》
We then found the drug AZD5582, a known small molecule inhibitor of BIRC2-3, to selectively kill FA tumor cells that overexpressed BIRC2-3. This occurred at drug concentrations that did not affect the viability of untransformed FA cells. Our data indicate that 11q22.2 amplifications are relatively common oncogenic events in FA-HNSCCs, as holds for non FA-HNSCC. Therefore, chemotherapeutic inhibition of overexpressed BIRC2-3 may provide the basis for an approach to develop a clinically realistic treatment of FA-HNSCCs that carry 11q22.2 amplifications。
2、唑来膦酸
《Zoledronic acid overcomes chemoresistance by sensitizing cancer stem cells to apoptosis》
ZA caused a dose- and time-dependent decrease in cell viability. Treatment with ZA resulted in a concomitant increase in apoptosis and cell cycle arrest at S-phase in CSCs. Significant over/under-expressions were detected in seven of the genes of ZA-treated DU-145 CSCs cells. Expressions of CASP9, CASP4, BAX and BAD genes increased, while the expressions of BIRC3, BIRC2 and BCL2 genes decreased. In the DU-145 non-CSCs, five genes exhibited changes in gene expression after ZA treatment, two exhibited increased expression (CASP7 and BAD) and three exhibited decreased expression (BIRC3, BIRC2 and BCL2).
3、氢气
《Hydrogen gas promotes apoptosis of lung adenocarcinoma A549 cells through X-linked inhibitor of apoptosis and baculoviral inhibitor of apoptosis protein repeat-containing 3》
Compared with the control group, the apoptosis rates in the 20%, 40%, and 60% hydrogen gas groups were significantly increased (P < 0.01). The levels of XIAP and BIRC3 protein expression were clearly decreased in the hydrogen gas group compared to the control group. Moreover, cisplatin and hydrogen gas reduced the tumor volume in nude mice (P < 0.01). Transcriptome sequencing showed that XIAP, BIRC2, BIRC3, BAX, PIK3CD, and ATM were related to apoptosis. Hydrogen gas further decreased the levels of XIAP and BIRC3 expression than in nude mice (P < 0.01).
页: [1]
查看完整版本: Pak1抑制剂、BIRC2, BIRC3抑制剂的替代药物